Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Eur J Paediatr Neurol ; 50: 16-22, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38564873

RESUMEN

INTRODUCTION: Patients with encephalitis following a viral infection are often thought to have a para infectious, inflammatory, or autoimmune cause for their presentation. These diagnoses usually result in treatments with immunosuppressant therapies which can have side effects. However, there is an increasing body of evidence demonstrating that patients can have a direct genetic cause mediating viral infection triggered encephalitis, where inflammation is a secondary response. These patients may benefit not from immunosuppressive therapies, but from protection from infection through dedicated immunisation programs and early antiviral therapies at times of infection. METHODS: A small case series of paediatric neurology patients (n = 2) from a single institution with infection induced encephalitis and an underlying genetic cause, is presented. Patients with a confirmed genetic cause of infection induced encephalitis were identified and consented by their treating neurologist for inclusion in this case series. Ethics approval was gained for this case series and review of the surrounding literature. CONCLUSION: A case of both DBR1 and NUP214 genetic changes resulting in infection induced encephalitis is presented. This case series raises awareness of this rare group of disorders and provides clues to their identification. Features to prompt clinician consideration of such genetic conditions are also highlighted. Although rare, identification of these patients is important due to implications on treatment, prognosis, and family planning.

2.
J Neurosci ; 44(6)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38124021

RESUMEN

Prolonged exposure to opioids causes an enhanced sensitivity to painful stimuli (opioid-induced hyperalgesia, OIH) and a need for increased opioid doses to maintain analgesia (opioid-induced tolerance, OIT), but the mechanisms underlying both processes remain obscure. We found that pharmacological block or genetic deletion of HCN2 ion channels in primary nociceptive neurons of male mice completely abolished OIH but had no effect on OIT. Conversely, pharmacological inhibition of central HCN channels alleviated OIT but had no effect on OIH. Expression of C-FOS, a marker of neuronal activity, was increased in second-order neurons of the dorsal spinal cord by induction of OIH, and the increase was prevented by peripheral block or genetic deletion of HCN2, but block of OIT by spinal block of HCN channels had no impact on C-FOS expression in dorsal horn neurons. Collectively, these observations show that OIH is driven by HCN2 ion channels in peripheral nociceptors, while OIT is driven by a member of the HCN family located in the CNS. Induction of OIH increased cAMP in nociceptive neurons, and a consequent shift in the activation curve of HCN2 caused an increase in nociceptor firing. The shift in HCN2 was caused by expression of a constitutively active µ-opioid receptor (MOR) and was reversed by MOR antagonists. We identified the opioid-induced MOR as a six-transmembrane splice variant, and we show that it increases cAMP by coupling constitutively to Gs HCN2 ion channels therefore drive OIH, and likely OIT, and may be a novel therapeutic target for the treatment of addiction.


Asunto(s)
Analgésicos Opioides , Hiperalgesia , Ratones , Masculino , Animales , Analgésicos Opioides/efectos adversos , Hiperalgesia/metabolismo , Canales Iónicos , Nociceptores , Médula Espinal/metabolismo , Dolor/metabolismo
3.
Eur J Hum Genet ; 31(10): 1125-1132, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36864115

RESUMEN

Molecular diagnosis of paediatric inborn errors of immunity (IEI) influences management decisions and alters clinical outcomes, through early use of targeted and curative therapies. The increasing demand for genetic services has resulted in growing waitlists and delayed access to vital genomic testing. To address this issue, the Queensland Paediatric Immunology and Allergy Service, Australia, developed and evaluated a mainstreaming model of care to support point-of-care genomic testing for paediatric IEI. Key features of the model of care included a genetic counsellor embedded in the department, state-wide multidisciplinary team meetings, and variant prioritisation meetings to review whole exome sequencing (WES) data. Of the 62 children presented at the MDT, 43 proceeded to WES, of which nine (21%) received a confirmed molecular diagnosis. Changes to treatment and management were reported for all children with a positive result, including curative hematopoietic stem cell transplantation (n = 4). Four children were also referred for further investigations of variants of uncertain significance or additional testing due to ongoing suspicion of genetic cause after negative result. Demonstrating engagement with the model of care, 45% of the patients were from regional areas and on average, 14 healthcare providers attended the state-wide multidisciplinary team meetings. Parents demonstrated understanding of the implications of testing, reported minimal decisional regret post-test, and identified benefits to genomic testing. Overall, our program demonstrated the feasibility of a mainstreaming model of care for paediatric IEI, improved access to genomic testing, facilitated treatment decision-making, and was acceptable to parents and clinicians alike.


Asunto(s)
Genómica , Padres , Humanos , Niño , Secuenciación del Exoma , Australia , Pruebas Genéticas
4.
EMBO J ; 42(3): e111348, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36524441

RESUMEN

Moderate coolness is sensed by TRPM8 ion channels in peripheral sensory nerves, but the mechanism by which noxious cold is detected remains elusive. Here, we show that somatosensory and sympathetic neurons express two distinct mechanisms to detect noxious cold. In the first, inhibition by cold of a background outward current causes membrane depolarization that activates an inward current through voltage-dependent calcium (CaV ) channels. A second cold-activated mechanism is independent of membrane voltage, is inhibited by blockers of ORAI ion channels and by downregulation of STIM1, and is recapitulated in HEK293 cells by co-expression of ORAI1 and STIM1. Using total internal reflection fluorescence microscopy we found that cold causes STIM1 to aggregate with and activate ORAI1 ion channels, in a mechanism similar to that underlying store-operated calcium entry (SOCE), but directly activated by cold and not by emptying of calcium stores. This novel mechanism may explain the phenomenon of cold-induced vasodilation (CIVD), in which extreme cold increases blood flow in order to preserve the integrity of peripheral tissues.


Asunto(s)
Canales de Calcio , Calcio , Humanos , Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Células HEK293 , Señalización del Calcio/fisiología , Neuronas/metabolismo , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Proteínas de Neoplasias/genética
5.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36342455

RESUMEN

Inborn and acquired deficits of type I interferon (IFN) immunity predispose to life-threatening COVID-19 pneumonia. We longitudinally profiled the B cell response to mRNA vaccination in SARS-CoV-2 naive patients with inherited TLR7, IRF7, or IFNAR1 deficiency, as well as young patients with autoantibodies neutralizing type I IFNs due to autoimmune polyendocrine syndrome type-1 (APS-1) and older individuals with age-associated autoantibodies to type I IFNs. The receptor-binding domain spike protein (RBD)-specific memory B cell response in all patients was quantitatively and qualitatively similar to healthy donors. Sustained germinal center responses led to accumulation of somatic hypermutations in immunoglobulin heavy chain genes. The amplitude and duration of, and viral neutralization by, RBD-specific IgG serological response were also largely unaffected by TLR7, IRF7, or IFNAR1 deficiencies up to 7 mo after vaccination in all patients. These results suggest that induction of type I IFN is not required for efficient generation of a humoral response against SARS-CoV-2 by mRNA vaccines.


Asunto(s)
Linfocitos B , Vacunas contra la COVID-19 , COVID-19 , Interferón Tipo I , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Autoanticuerpos , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Receptor Toll-Like 7/genética , Vacunación , Vacunas de ARNm , Vacunas contra la COVID-19/inmunología , Linfocitos B/inmunología , Interferón Tipo I/deficiencia
6.
Inflammopharmacology ; 30(6): 2399-2410, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36173505

RESUMEN

BACKGROUND: There is a growing search for therapeutic targets in the treatment of gout. The present study aimed to evaluate the analgesic and anti-inflammatory potential of angiotensin type 2 receptor (AT2R) antagonism in an acute gout attack mouse model. METHODS: Male wild-type (WT) C57BL/6 mice either with the AT2R antagonist, PD123319 (10 pmol/joint), or with vehicle injections, or AT2R KO mice, received intra-articular (IA) injection of monosodium urate (MSU) crystals (100 µg/joint), that induce the acute gout attack, and were tested for mechanical allodynia, thermal hyperalgesia, spontaneous nociception and ankle edema development at several times after the injections. To test an involvement of AT2R in joint pain, mice received an IA administration of angiotensin II (0.05-5 nmol/joint) with or without PD123319, and were also evaluated for pain and edema development. Ankle joint tissue samples from mice undergoing the above treatments were assessed for myeloperoxidase activity, IL-1ß release, mRNA expression analyses and nitrite/nitrate levels, 4 h after injections. RESULTS: AT2R antagonism has robust antinociceptive effects on mechanical allodynia (44% reduction) and spontaneous nociception (56%), as well as anti-inflammatory effects preventing edema formation (45%), reducing myeloperoxidase activity (54%) and IL-1ß levels (32%). Additionally, Agtr2tm1a mutant mice have largely reduced painful signs of gout. Angiotensin II administration causes pain and inflammation, which was prevented by AT2R antagonism, as observed in mechanical allodynia 4 h (100%), spontaneous nociception (46%), cold nociceptive response (54%), edema formation (83%), myeloperoxidase activity (48%), and IL-1ß levels (89%). PD123319 treatment also reduces NO concentrations (74%) and AT2R mRNA levels in comparison with MSU untreated mice. CONCLUSION: Our findings show that AT2R activation contributes to acute pain in experimental mouse models of gout. Therefore, the antagonism of AT2R may be a potential therapeutic option to manage gout arthritis.


Asunto(s)
Dolor Agudo , Artritis Gotosa , Gota , Ratones , Masculino , Animales , Ácido Úrico , Hiperalgesia/tratamiento farmacológico , Angiotensina II , Receptor de Angiotensina Tipo 2 , Peroxidasa , Ratones Endogámicos C57BL , Gota/tratamiento farmacológico , Gota/metabolismo , Artritis Gotosa/tratamiento farmacológico , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Antiinflamatorios/uso terapéutico , Edema/tratamiento farmacológico , Antioxidantes/uso terapéutico , Dolor Agudo/tratamiento farmacológico , ARN Mensajero
7.
Sci Rep ; 12(1): 11078, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773325

RESUMEN

Immune cell chemotaxis to the sites of pathogen invasion is critical for fighting infection, but in life-threatening conditions such as sepsis and Covid-19, excess activation of the innate immune system is thought to cause a damaging invasion of immune cells into tissues and a consequent excessive release of cytokines, chemokines and neutrophil extracellular traps (NETs). In these circumstances, tempering excessive activation of the innate immune system may, paradoxically, promote recovery. Here we identify the antimalarial compound artemisinin as a potent and selective inhibitor of neutrophil and macrophage chemotaxis induced by a range of chemotactic agents. Artemisinin released calcium from intracellular stores in a similar way to thapsigargin, a known inhibitor of the Sarco/Endoplasmic Reticulum Calcium ATPase pump (SERCA), but unlike thapsigargin, artemisinin blocks only the SERCA3 isoform. Inhibition of SERCA3 by artemisinin was irreversible and was inhibited by iron chelation, suggesting iron-catalysed alkylation of a specific cysteine residue in SERCA3 as the mechanism by which artemisinin inhibits neutrophil motility. In murine infection models, artemisinin potently suppressed neutrophil invasion into both peritoneum and lung in vivo and inhibited the release of cytokines/chemokines and NETs. This work suggests that artemisinin may have value as a therapy in conditions such as sepsis and Covid-19 in which over-activation of the innate immune system causes tissue injury that can lead to death.


Asunto(s)
Artemisininas , Tratamiento Farmacológico de COVID-19 , Trampas Extracelulares , Macrófagos , Neutrófilos , Sepsis , Animales , Artemisininas/farmacología , Calcio/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Quimiotaxis/efectos de los fármacos , Citocinas/biosíntesis , Citocinas/metabolismo , Trampas Extracelulares/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Tapsigargina/farmacología
8.
J Mol Biol ; 434(16): 167682, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35697294

RESUMEN

Disordered scaffold proteins provide multivalent landing pads that, via a series of embedded Short Linear Motifs (SLiMs), bring together the components of a complex to orchestrate precise spatial and temporal regulation of cellular processes. One such protein is AKAP5 (previously AKAP79), which contains SLiMs that anchor PKA and Calcineurin, and recruit substrate (the TRPV1 receptor). Calcineurin is anchored to AKAP5 by a well-characterised PxIxIT SLiM. Here we show, using a combination of biochemical and biophysical approaches, that the Calcineurin PxIxIT-binding groove also recognises several hitherto unknown lower-affinity SLiMs in addition to the PxIxIT motif. We demonstrate that the assembly is in reality a complex system with conserved SLiMs spanning a wide affinity range. The capture is analogous to that seen for many DNA-binding proteins that have a weak non-specific affinity for DNA outside the canonical binding site, but different in that it involves (i) two proteins, and (ii) hydrophobic rather than electrostatic interactions. It is also compatible with the requirement for both stable anchoring of the enzyme and responsive downstream signalling. We conclude that the AKAP5 C-terminus is enriched in lower-affinity/mini-SLiMs that, together with the canonical SLiM, maintain a structurally disordered but tightly regulated signalosome.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Calcineurina , Proteínas Intrínsecamente Desordenadas , Monoéster Fosfórico Hidrolasas , Proteínas de Anclaje a la Quinasa A/química , Calcineurina/química , Humanos , Proteínas Intrínsecamente Desordenadas/química , Monoéster Fosfórico Hidrolasas/química , Unión Proteica , Transducción de Señal
10.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35442418

RESUMEN

Globally, autosomal recessive IFNAR1 deficiency is a rare inborn error of immunity underlying susceptibility to live attenuated vaccine and wild-type viruses. We report seven children from five unrelated kindreds of western Polynesian ancestry who suffered from severe viral diseases. All the patients are homozygous for the same nonsense IFNAR1 variant (p.Glu386*). This allele encodes a truncated protein that is absent from the cell surface and is loss-of-function. The fibroblasts of the patients do not respond to type I IFNs (IFN-α2, IFN-ω, or IFN-ß). Remarkably, this IFNAR1 variant has a minor allele frequency >1% in Samoa and is also observed in the Cook, Society, Marquesas, and Austral islands, as well as Fiji, whereas it is extremely rare or absent in the other populations tested, including those of the Pacific region. Inherited IFNAR1 deficiency should be considered in individuals of Polynesian ancestry with severe viral illnesses.


Asunto(s)
Receptor de Interferón alfa y beta , Virosis , Alelos , Niño , Homocigoto , Humanos , Polinesia
11.
J Paediatr Child Health ; 58(3): 404-408, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34499401

RESUMEN

AIM: This study aims to evaluate the utility of genetic testing of patients diagnosed with periodic fever syndromes and to assess the validity of existing scoring criteria. METHODS: This study retrospectively reviewed the clinical history of patients diagnosed with periodic fever syndromes at Queensland Children's Hospital between November 2014 and June 2018. RESULTS: Forty-three patients were diagnosed with periodic fever syndromes. Diagnoses in the cohort included periodic fever, adenitis, pharyngitis and aphthous stomatitis (10), tumour necrosis factor receptor-associated periodic syndrome (9), cryopyrin-associated periodic syndrome (6), mevalonate kinase deficiency (4) while 14 remained unspecified. No presenting symptoms were uniquely associated with any particular diagnosis. Genetic testing of between 1 and 26 genes was performed in 26 (60%) patients. Two (7.7%) patients had pathogenic variants identified. Variants of uncertain significance which were insufficient to confirm a monogenic disorder were identified in a further 7 (27%) patients. The Eurofever classification criteria correlated with clinical diagnosis for patients diagnosed with cryopyrin-associated periodic syndrome (P = 0.046) and tumour necrosis factor receptor-associated periodic syndrome (P = 0.025) but not for patients diagnosed with mevalonate kinase deficiency (P = 0.47); however, the Eurofever classification criteria were often positive for more than one diagnosis in these patients. CONCLUSION: The European classification criteria can form a potentially useful tool to guide diagnosis; however, clinical judgement remains essential, because the score is often positive for multiple diagnoses. The diagnostic yield of genetic testing in this cohort was low and genetic testing may be more useful to confirm a strong clinical suspicion than to clarify a diagnosis for patients with less clear symptoms.


Asunto(s)
Fiebre Mediterránea Familiar , Linfadenitis , Deficiencia de Mevalonato Quinasa , Faringitis , Estomatitis Aftosa , Niño , Fiebre Mediterránea Familiar/diagnóstico , Fiebre Mediterránea Familiar/genética , Humanos , Linfadenitis/diagnóstico , Linfadenitis/genética , Deficiencia de Mevalonato Quinasa/diagnóstico , Deficiencia de Mevalonato Quinasa/genética , Estudios Retrospectivos , Estomatitis Aftosa/diagnóstico , Estomatitis Aftosa/genética
12.
J Neurosci ; 42(40): 7513-7529, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36658457

RESUMEN

Migraine is believed to be initiated by neuronal activity in the CNS, that triggers excitation of nociceptive trigeminal ganglion (TG) nerve fibers innervating the meninges and thus causes a unilateral throbbing headache. Drugs that precipitate or potentiate migraine are known to elevate intracellular levels of the cyclic nucleotides cAMP or cGMP, while anti-migraine treatments couple to signaling pathways that reduce cAMP or cGMP, suggesting an involvement of these cyclic nucleotides in migraine. Members of the HCN ion channel family are activated by direct binding of cAMP or cGMP, suggesting in turn that a member of this family may be a critical trigger of migraine. Here, we show that pharmacological block or targeted genetic deletion of HCN2 abolishes migraine-like pain in three rodent migraine models (in both sexes). Induction of migraine-like pain in these models triggered expression of the protein C-FOS, a marker of neuronal activity, in neurons of the trigeminocervical complex (TCC), where TG neurons terminate, and C-FOS expression was reversed by peripheral HCN2 inhibition. HCN2 block in vivo inhibited both evoked and spontaneous neuronal activity in nociceptive TG neurons. The NO donor glyceryl trinitrate (GTN) caused an increase in cGMP in the TG in vivo Exposing isolated TG neurons to GTN caused a rightward shift in the voltage dependence of HCN currents and thus increased neuronal excitability. This work identifies HCN2 as a novel target for the development of migraine treatments.SIGNIFICANCE STATEMENT Migraine is believed to be initiated by localized excitability of neurons within the CNS, but the most disturbing symptom, the characteristic throbbing migraine headache pain, is widely agreed to be caused by activity in afferent pain-sensitive (nociceptive) nerve fibers of the trigeminal nerve. Using a variety of preclinical models of migraine, we identify the HCN2 ion channel as the molecular source of trigeminal hyperexcitability in migraine and we show that pharmacological or genetic inhibition of HCN2 can relieve migraine-like pain symptoms. The work highlights the HCN2 ion channel as a potential pharmacological target for the development of novel analgesics effective in migraine.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Trastornos Migrañosos , Animales , Masculino , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Roedores , Dolor/metabolismo , Trastornos Migrañosos/genética , Cefalea , Nucleótidos Cíclicos
13.
Pain Rep ; 6(4): e967, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712888

RESUMEN

INTRODUCTION: Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels mediate repetitive action potential firing in the heart and nervous system. The HCN2 isoform is expressed in nociceptors, and preclinical studies suggest a critical role in neuropathic pain. Ivabradine is a nonselective HCN blocker currently available for prescription for cardiac indications. Mouse data suggest that ivabradine in high concentrations is equianalgesic with gabapentin. We sought to translate these findings to patients with chronic peripheral neuropathic pain. OBJECTIVES: We sought to translate these findings to patients with chronic peripheral neuropathic pain. METHODS: We adopted an open-label design, administering increasing doses of ivabradine to target a heart rate of 50 to 60 BPM, up to a maximum of 7.5 mg twice daily. All participants scored their pain on an 11-point numerical rating scale (NRS). RESULTS: Seven (7) participants received the drug and completed the study. There was no significant treatment effect on the primary endpoint, the difference between the mean score at baseline and at maximum dosing (mean reduction = 0.878, 95% CI = -2.07 to 0.31, P = 0.1). Exploratory analysis using linear mixed models, however, revealed a highly significant correlation between ivabradine dose and pain scores (χ2(1) = 74.6, P < 0.001), with a reduction of 0.12 ± 0.01 (SEM) NRS points per milligram. The 2 participants with painful diabetic neuropathy responded particularly well. CONCLUSION: This suggests that ivabradine may be efficacious at higher doses, particularly in patients with diabetic neuropathic pain. Importantly, participants reported no adverse effects. These data suggest that ivabradine, a peripherally restricted drug (devoid of central nervous system side effects), is well tolerated in patients with chronic neuropathic pain. Ivabradine is now off-patent, and its analgesic potential merits further investigation in clinical trials.

14.
J Neurosci ; 41(38): 7954-7964, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34341156

RESUMEN

Oligodendrocytes generate myelin sheaths vital for the formation, health, and function of the CNS. Myelin sheath length is a key property that determines axonal conduction velocity and is known to be variable across the CNS. Myelin sheath length can be modified by neuronal activity, suggesting that dynamic regulation of sheath length might contribute to the functional plasticity of neural circuits. Although the mechanisms that establish and refine myelin sheath length are important determinants of brain function, our understanding of these remains limited. In recent years, the membranes of myelin sheaths have been increasingly recognized to contain ion channels and transporters that are associated with specific important oligodendrocyte functions, including metabolic support of axons and the regulation of ion homeostasis, but none have been shown to influence sheath architecture. In this study, we determined that hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels, typically associated with neuronal and cardiac excitability, regulate myelin sheath length. Using both in vivo and in vitro approaches, we show that oligodendrocytes abundantly express functional, predominantly HCN2 subunit-containing ion channels. These HCN ion channels retain key pharmacological and biophysical features and regulate the resting membrane potential of myelinating oligodendrocytes. Further, reduction of their function via pharmacological blockade or generation of transgenic mice with two independent oligodendrocyte-specific HCN2 knock-out strategies reduced myelin sheath length. We conclude that HCN2 ion channels are key determinants of myelin sheath length in the CNS.SIGNIFICANCE STATEMENT Myelin sheath length is a critical determinant of axonal conduction velocity, but the signaling mechanisms responsible for determining sheath length are poorly understood. Here we find that oligodendrocytes express functional hyperpolarization-activated, cyclic nucleotide-gated 2 (HCN2) ion channels that regulate the length of myelin sheaths formed by oligodendrocytes in myelinating cultures and in the mouse brain and spinal cord. These results suggest that the regulation of HCN2 channel activity is well placed to refine sheath length and conduction along myelinated axons, providing a potential mechanism for alterations in conduction velocity and circuit function in response to axonal signals such as those generated by increased activity.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Corteza Prefrontal/metabolismo , Animales , Axones/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Ratones , Ratones Transgénicos , Conducción Nerviosa/fisiología , Neuronas/metabolismo
15.
Sci Rep ; 11(1): 9339, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927223

RESUMEN

Neutrophils must navigate accurately towards pathogens in order to destroy invaders and thus defend our bodies against infection. Here we show that hydrogen peroxide, a potent neutrophil chemoattractant, guides chemotaxis by activating calcium-permeable TRPM2 ion channels and generating an intracellular leading-edge calcium "pulse". The thermal sensitivity of TRPM2 activation means that chemotaxis towards hydrogen peroxide is strongly promoted by small temperature elevations, suggesting that an important function of fever may be to enhance neutrophil chemotaxis by facilitating calcium influx through TRPM2. Chemotaxis towards conventional chemoattractants such as LPS, CXCL2 and C5a does not depend on TRPM2 but is driven in a similar way by leading-edge calcium pulses. Other proposed initiators of neutrophil movement, such as PI3K, Rac and lyn, influence chemotaxis by modulating the amplitude of calcium pulses. We propose that intracellular leading-edge calcium pulses are universal drivers of the motile machinery involved in neutrophil chemotaxis.


Asunto(s)
Quimiotaxis , Neutrófilos/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Peróxido de Hidrógeno , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Neurosci Lett ; 747: 135705, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33548408

RESUMEN

Tinnitus has similarities to chronic neuropathic pain where there are changes in the firing rate of different types of afferent neurons. We postulated that one possible cause of tinnitus is a change in the distribution of spontaneous firing rates in at least one type of afferent auditory nerve fibre in anaesthetised guinea pigs. In control animals there was a bimodal distribution of spontaneous rates, but the position of the second mode was different depending upon whether the fibres responded best to high (> 4 kHz) or low (≤4 kHz) frequency tonal stimulation. The simplest and most reliable way of inducing tinnitus in experimental animals is to administer a high dose of sodium salicylate. The distribution of the spontaneous firing rates was different when salicylate (350 mg/kg) was administered, even when the sample was matched for the distribution of characteristic frequencies in the control population. The proportion of medium spontaneous rate fibres (MSR, 1≤ spikes/s ≤20) increased while the proportion of the highest, high spontaneous firing rate fibres (HSR, > 80 spikes/s) decreased following salicylate. The median rate fell from 64.7 spikes/s (control) to 35.4 spikes/s (salicylate); a highly significant change (Kruskal-Wallis test p < 0.001). When the changes were compared with various models of statistical probability, the most accurate model was one where most HSR fibres decreased their firing rate by 32 spikes/s. Thus, we have shown a reduction in the firing rate of HSR fibres that may be related to tinnitus.


Asunto(s)
Corteza Auditiva/efectos de los fármacos , Umbral Auditivo/efectos de los fármacos , Nervio Coclear/efectos de los fármacos , Potenciales Evocados Auditivos/efectos de los fármacos , Salicilatos/farmacología , Potenciales de Acción/fisiología , Animales , Cobayas
18.
Eur J Pain ; 25(1): 189-198, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32965065

RESUMEN

BACKGROUND: Paclitaxel (PCX) is the first-line choice for the treatment of several types of cancer, including breast, ovarian, and lung cancers. However, patients who receive even a single dose with PCX commonly develop mechanical and cold allodynia, a symptom known as PCX-associated acute pain syndrome (P-APS). Here, we assessed possible involvement of kinin-kallikrein and renin-angiotensin systems in P-APS in mice. METHODS: Male mice C57Bl/6 wild type (WT) and knockouts for bradykinin receptors, B1 (B1-/- ) and B2 (B2-/- ), were used. Mechanical and cold allodynia were evaluated by using von Frey filaments and acetone test, respectively. P-APS was induced by administration of PCX 4 mg/kg, i.v.. ACE inhibitors (captopril and enalapril), antagonists for angiotensin II type 1 (losartan) and type 2 ([AT2R]; PD123319 and EMA 401) receptors were administrated prior the treatment with PCX. RT-PCR was used to analyse the expression of mRNA for B1, B2 and AT2R receptors. RESULTS: Administration of PCX in B1-/- and B2-/- mice induced lower mechanical and cold allodynia compared to the WT. However, the pre-treatment with ACE inhibitors reduced the development of mechanical and cold allodynia in P-APS. Surprisingly, we found that mice pre-treatment with the PD123319 or EMA401, but not losartan, prevented the development of mechanical and cold allodynia induced by PCX. CONCLUSION: Our results demonstrated the involvement of bradykinin receptors B1 and B2 as well as AT2R in the induction of P-APS in mice, and suggest the use of AT2R antagonists as a potential therapy for the prevention of P-APS in humans. SIGNIFICANCE: Kinin-kallikrein and renin-angiotensin systems, through B1, B2 and AT2 receptors, potentiates paclitaxel-associated acute pain syndrome (P-APS) in mice. Antagonists for AT2R are potential alternatives to prevent P-APS.


Asunto(s)
Dolor Agudo , Bloqueadores del Receptor Tipo 2 de Angiotensina II , Antagonistas de los Receptores de Bradiquinina , Receptores de Bradiquinina , Animales , Bradiquinina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Paclitaxel/toxicidad , Receptor de Angiotensina Tipo 1 , Receptor de Angiotensina Tipo 2/genética
20.
Front Cell Neurosci ; 14: 262, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973456

RESUMEN

The detection of ambient cold is critical for mammals, who use this information to avoid tissue damage by cold and to maintain stable body temperature. The transduction of information about the environmental cold is mediated by cold-sensitive ion channels expressed in peripheral sensory nerve endings in the skin. Most transduction mechanisms for detecting temperature changes identified to date depend on transient receptor potential (TRP) ion channels. Mild cooling is detected by the menthol-sensitive TRPM8 ion channel, but how painful cold is detected remains unclear. The TRPA1 ion channel, which is activated by cold in expression systems, seemed to provide an answer to this question, but whether TRPA1 is activated by cold in neurons and contributes to the sensation of cold pain continues to be a matter of debate. Recent advances have been made in this area of investigation with the identification of several potential cold-sensitive ion channels in thermosensory neurons, including two-pore domain potassium channels (K2P), GluK2 glutamate receptors, and CNGA3 cyclic nucleotide-gated ion channels. This mini-review gives a brief overview of the way by which ion channels contribute to cold sensation, discusses the controversy around the cold-sensitivity of TRPA1, and provides an assessment of some recently-proposed novel cold-transduction mechanisms. Evidence for another unidentified cold-transduction mechanism is also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...